See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/251129588

Comparison of Lead-free and Conventional x-ray aprons for Diagnostic Radiology

Article in IFMBE proceedings · January 2009 DOI: 10.1007/978-3-642-03902-7_155

citations 7	READS 10,912
3 authors, including:	
Prodromos Kaplanis Nicosia General Hospital	Georgios Menikou Cyprus University of Technology
30 PUBLICATIONS 259 CITATIONS	17 PUBLICATIONS 77 CITATIONS
SEE PROFILE	SEE PROFILE

All content following this page was uploaded by Prodromos Kaplanis on 27 May 2014.

Comparison of Lead-free and Conventional x-ray aprons for Diagnostic Radiology

N. Papadopoulos, <u>C. Papaefstathiou</u>, P.A. Kaplanis, G. Menikou, G. Kokona, D. Kaolis, C. Yiannakkaras and S. Christofides

Medical Physics Department/Nicosia General Hospital, Nicosia, Cyprus

Introduction

- Lead is considered to be the most suitable material for protection against x-ray exposure due to its high mass attenuation coefficient for a wide energy range.
- It is the only element that has been used for the production of x-ray aprons worn by Radiation Personnel.

Introduction -2

There is need for alternatives to lead x-ray aprons as:

1. The weight of lead aprons often causes discomfort and fatigue during prolonged examinations.

2. They are associated with cervical/lumbar spine and other neurological health problems.

3. Lead is considered a hazardous material.

Introduction -3

- Lightweight environmentally friendly composite materials have been in the production of the so called "lead-free" aprons.
- Tin (Sn50), antimony (Sb51), or tungsten (W74) are some of the materials used.
- The evaluation of the protective effects of leadfree materials are stated at a single value of the tube voltage and not for the complete diagnostic energy range.

Introduction -4

The Medical Physics Department of Nicosia General Hospital carried out a study to evaluate whether lead-free aprons are as effective as conventional lead aprons.

Materials and Methods

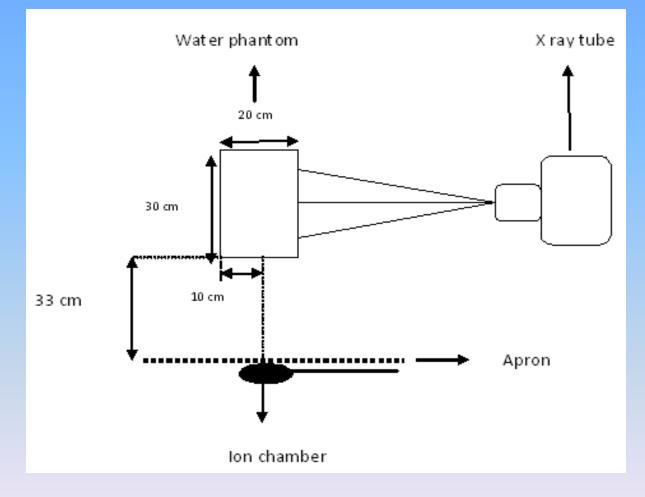
- Lead aprons of 0.5/0.25 mm thickness and lead-free aprons with the same lead equivalence were compared.
- A series of transmission measurements over the diagnostic energy range (60-120 kVp) were performed on each apron.

Materials and Methods -2

 Broad beam geometry instead of narrow beam was used to include the contribution of secondary radiation (scattered and fluorescent).

• Lead-free materials with atomic numbers below 60 generate significant amount of fluorescent radiation.

Materials and Methods -3


• A fluoroscopic x-ray system (Model Mecall Superix 180N).

• A 30x30x20 cm water phantom was used to simulate an overweight patient and a field size of 30x30 cm.

• Exposure measurements were recorded with a calibrated Radcal 2026C electrometer plus 180cc ionization chamber.

• The effective attenuation of both conventional lead and lead-free aprons was calculated across the diagnostic energy range.

Materials and Methods -4 Experiment Set-Up:

Results

Attenuation at different beam qualities for scattered x-rays

Apron Brand	Attenuation (%)			Average Attenuation (%)	
kVp	60	80	100	120	
HVL (mmAl)	2.5	3	4	5	
Lead-free 1	99.3	98.0	96.3	94.7	97.1
Lead-free 2	99.3	98.1	96.5	94.8	97.2
Lead-free 3	99.5	98.7	97.3	95.7	97.8
Lead-free 4	99.4	98.4	97.0	95.4	97.6
Lead-free 5	95.3	89.6	84.2	79.6	87.2
Conventional	100	99.2	97.8	96.4	98.4

Results -2

Average attenuation over weight for lead-free aprons

Apron Brand	Average Attenuation (%)/weight (kg)
Lead-free 1	22.1
Lead-free 2	22.1
Lead-free 3	25.1
Lead-free 4	24.4
Lead-free 5	21.8

Conclusions

- None of the lead-free aprons provide lead equivalency (LE) of 0.5mm as stated by their manufacturers.
- 2. Lead -free aprons with the same weight, exhibit different levels of attenuation at the same beam quality.
 - The attenuation effect of each constituent material varies significantly with energy.
 - It is impossible for the manufacturers to state lead equivalency across the entire diagnostic energy range.
- 3. Materials with high atomic numbers and low densities provide the best attenuation.

Conclusions -2

Concluding the study showed that the Acceptance testing of lead-free aprons is essential to ensure that they meet their manufacturer's specifications as well as the necessity for the establishment of acceptable tolerance levels at different diagnostic energies.